An Approach to AP Interoperability in a File Exchange Environment

by
Mitchell Gilbert

Introduction

A great deal of work andhought has taken @te vithin PDES, Inc. cocerning the ability of

the STEP models to support a concept called "AP Inesadyility”. Many discussions have
been held to consider thmeaning of thisdrm and the muirements for both the standard and
implementations of the standard in order to achieve this goal. For the purposes of this
paper a narrow focus dhis concept is going to be discussed. That focus is the need to be
able to develop application sofiwe for physical file exchange using more than one
application protocol together in concert.

In previous discussions a basic assumption wameedg to armong all participants. That
assumption is that it is unr@anable to expect that an irepientation of one AP will be able
to process a physical file produced by an ienpéntation of another AP without the knowledge
of that other APs schema. hi§ simple understanding provides a basis for an émphtation
architecture for STEP. This qiie of the STEP data shay puzzle is one which has only now
being explored. Once a viable implentation architecture becomes well defined and
understood along with the STEP modmichitecture, data sharing will become an achievable
goal.

2 STEP Method and Architecture

STEP is a standard which is based on conceptual modeling as one ofeitedb principles.

As such, STEP has used an information modeling language in order to specifiednéng of

the product data which is being represented and exchanged. A basic principle in the use of
this information modeling language has been the development of a atatdtecture and
methodology thatcarefilly balances the common rdad of the standard, qauct data, with
different views of the common thread based on theogmition of difering requrements
depending on dfiering uses. This common réad is represented in the STEP hitecture by

two different types of constructs. The first type of construct is the integrated resource
construct. These omstructs are very broad and generic in that they are available to
satisfy the rgquirements of many dferent @plications. The integrated resoas form
building blocks vith which the application's reqeiments can be fulfiled. The process

of fulfilling these requiements is called interpretation. During this process, very
generic conceptsare used, specialized ororstrained in order to satisfy the resuments

of a particular application.

The secondtype of construct is the Application Interpreted Construct or AIC. The AICs are
a recognition in the STEParchitecture that some interpretations as defined above may
belong to more than one AP. that is, theme set of muirements for specialization and
constraint exist within more than one AP. The AIC development process will define a STEP
conceptual construct or set of constructs that will represent and bound that common
interpretation. The definition of the AIC, however, must involve the application of some
AP's requirements against the integrated resources.

The recognition of dfering requrements is manifested in STEP as the Application Protocol
and, therefore, the application interpreted model. The application interpreted model
defines the constructs to be impiented, both the common constructs to product data and the

applicaton specific constructs. These remgumelts are panstakingly developed by the
applicdion protocol developmenteam. They devep an application activity model of a
process that drives the discovery of data. That process is then detailed into ramatiofo
model called the applicatiorreference model and Ndated using experts in the application
area. The pplication reference model is then drivemto the application interpreted model

by mapping the requements of the application to the generic product data defined in the
integrated resorces and pplication interpreted constructs using a strict set of rules about
what may and may not be done. These application interpretation rules for a well defined
boundary between the common thread of STEP and the application specific thread of STEP.

3 The Problem

Since all of the application interpreted modelee built using these common building blocks,
the data which they define may be sharedhisTdata may be application specific in the case of
shared AIC structure among fféirent APs, or it may be generic in nature, and achieved by the
use of common integrated resoe @nstructs. Because all APs pgplication interpreted models
share these common bondserth are some specific gtons that arise when we think about the
interoperability of two or more APs.

1. What is the common data?
2. What are the common concepts?

Once we answer these questions, we can hmaaningful interoprability among dferent
applications which use different APs. The olplem that we face whenever wdiscuss
interoperability is that it becomes a rote process, instead afeaningful one. The questions
above arenot answred, and ofte× may not even be asked. The question becomes one of
structure. The questions become more like:

1. What is the common structure?
2. What is interfering with the sharing of that structure?

3. How can | ram ahysical file written inaccordance ith one AP into my immmentation of
another AP and derive meaningful information?

If we ask these questions, then waee dstined to fail in the quest of data sharing at a physical
file level using STEP APs. Only by understanding theaning of the infonation which is being
exchanged and by planning toash common data, and therefore common cotsgecan we achieve

the type of data sharing that we have grown to expect from STERnmptations. The problem

with asking the questions about common structure is that these questions circumvent the
primary basis for STEP, the conceptual model. Of course the structure of the model is
important, and we need to know the structure of the model, especially the common structure
among APs in order to achieve data si@r but that is not enough. Constraints written in both
application interpreted models guide the allowable populations of the attributesachf AP.
These constraints establish the relationships among thiferedit structures and the
standardize the interpretations of some attributes in a more concise way than the integrated
resources can gpvide. We need to understand the relationships among the constructs that
comprise the structure of the APs, and the meaning of tfferadit structuresgiven by entity
structure, normative text and constraints in order to achieve useful data sharing.

4 Interoperability scenarios

To illustrate some of these data sharing concepts, an EI8RE model of some of the common
concepts among APs iHven as figure 1. This model is not one of any particular AP in STEP. It
does, however, provide a similar conceptual representation to thematfon found in the
application interpreted model s

name
STRING I.

person_and_organization

Cf assigned_person_and_organization

person_organization_role

role

ap_definition

£

year
———————() STRING

schema name
——————0 STRING

application_context

!

product_context

O

product definition

context

frame of reference

frame_of reference

"T p_o_item
1

07

(ABS)
person_and_organization
assignment

ap2xx_person_and_
organization_assignment

items S[1:?]

!

product

O

)

of_product | product_definition_
formation

formation ?

O

product_definition

product_definition formation

with_specified_source
defintion
source
property O
make_or_buy ‘
é [
shape
|
non_ b surface
topology ep model

Figure 1 - EXPRESS-G Example Model

of both AP202 and AP203. The model has been simplified for the purpose of illustration. Since
the model has been simplified, temove confusion, the two APs will simply be discussed as AP1
and AP2. The model includes the definition of a product, the versioning of that product, the
definition of the product, one property of the product - shapegethdifferent representation
types for that shape and thessaciation of person and organization mfation with the
product and the version. What is not shown in the EXPRE is the anstraints in the model and

a couple of distinguishing factors between the two AP schemas.

The two AP schemas ilv each ontain a rule on the ame attibute of the
person_orgaization_role entity. For discussion's sake, lets say that in AP1l, the rule says
that the name atbute for person_organization_role shall have a value of either "a", "b" or
"c". The rule on the same aliute in the AP2 sadma specifies that the abmte shall have

a value of either "c", "d", or "e". These rules areitten in accordance iuh the
interpretation method for the emeraion of STRING typed attributes. That method specifies
that a global rule is written ineach schema for the pen_organization_role entity that
constrains eachnstance of that entitcreated whin the scope ofeach schema to have a name
attribute with the previously defined strings. Ferthore, there are some differences in the
scope of each AP model. The safmshown lere is guivalent to the union of the two AP srhas.

In AP1, the subtype product_definition_formatiorithwspecified_sorce of
product_definition_formation is out of scope. The supertype, product_definitromation,

is within the scope of APL. AP2, on the other hand, has a resgemt for a
product definition_formation with the seooe informaion specified and #refore has a
constaint that within its scope all product definitionrfmation entities must specify their
source and thesubtype entity must always be used. The othfferénce in the two APs is that
the

AP2XX_person_and_organization_assignment entity i#erdnt in each schema, and the select
type p_o_item may select different entities which are not given in figure 1.

There are two important aspects of the model which need tdidmeissed before examining the
issues that have been raised conicgy data sharing. The two important aspeet® the
product_ontext and the product_definition_context. Since the STEP standard is pitwalutct

data, every data exchange that conforms to any STEP AP will contain at least an instance of the
product atity. In order to specify some infmation that defines fferent aspects of the
product such as properties or prestBata the concept of a product's definition must be used
and thereforethose data exchanges will contain instances of the product_definition entity.
The important concept to notice is that the model contains navigation paths so that any
instance of any entity may always bmded back tats context within STEP. The context, then,

will contain data that specifies at least onp_definition. This is true drause each AP
contains a rule that specifies thateth nust be exactly one ap_definition that calls out the
AP schema name refereng the application_context entity. So, we see that every entity
instance in a physical file can be traced back to its AP meta-data.

With this in mind, and keeping in mind our original assumption that the processors must
understand the syntax andnsantics (AP sadma) of aother AP in order to understand the common
data, let's now examine some data sharing problems and some possible solutions which can be
implemented. Four scenarios will be discussed:

1. How does an application share data when the structure and meaning is exactly the same.

2. How does an application conforming to APlareh data wh another application conforming
to AP2 if one AP has a more generic scope than the other.

3. How does an application conforming to APlareh data wh another application conforming
to AP2 if there are different,possibly conflicting, constraints on the population of the
attributes of the same entity.

4. How does an application conforming to APlargh data Wwh another application conforming
to AP2 if there are different néities for the assignment of marmagent resources (like
person_and_organization).

The first scenario consists of the sharing of data when thenssh are ex#ly the same. The

area in the example is that of opluct_definition, property, shape and the ffedéent
representations of shape. Since the physical file instances for these eat@tiesxatly the

same, a processor for AP1 and for AP2 will have little trouble understanding these constructs.
The aplication code should be exactly thame to process thedgpes of things. In addition,
since the representation type entitiase derived from a common s, an AIC, tere is a
shared interpretion here. The onstraints on the entities within the AICs whose scope is
defined by these entitieare the same and thereforallwbe enfaced in the same manner across

all APs which use them.

The second scenario entails the sharing of the common data when one AP has a more generic scope
than another AP. This scenario is illustrated by the use of product definitioration and

product_definition_formation_with specified_soe. AP1 uses only the more generic
supetype and AP2 uses the more specific subtype in order to specify theesai the
product definition_formation. Furthermore, as pimusly discussed, AP2 constrains the

product_definition_formation to say that the only typseaningful to an application developed
for its context is one in which theource is specified. The gqblem as stated is that the
physical file "flattens" out the subtype/supertype structure so that the file processors will
not see the structure. So pdnysical file which is written inaccordance ith AP1 will specify:

#1=PRODUCT_DEFINITION_FORMATION(of_product);
A physical file written in accordance with AP 2 will specify:
#1=PRODUCT_DEFINITION_FORMATION_WITH_SPECIFIED_SOURCE(of_product, source);

These entitiesare clearly different and, ithout the knowledge of the AP2 smha, a processor
for AP1 would have no way of knowing that the underlying concept of
product_definition_formation is the same both cases. So, the only way to make this work is
that an AP1 processor has to know the AP2esth and the relmnship between the two entities.

Is this a one time solution? The answer is no. If aneémphtor wants to build up a system that
will enable the sysematic implementation of many filirent gplication protocols he can build

a data dictionary capable ofecognizing these relationships and reuse that data dictionary
as more APs of interest to his cusirs are deveped. Since the STERrchitecture and
methodology povides a common basis for all product data, all ARSGUARANTEED to build upon

that common basis.

There is another issue in this scenario, and that issue is loss of data or lack of data. If an
AP1 processor igeading a file written by an AP2 processorerth will be a loss of the source
data. This, however, imot a problem since the application has no need for thisrniafibon

and is only cooerned \ith its particular function. The integration problenerdé is to develop
compartments in which tostore instances of the ffiirent, but related data. If an AP2
implementationreceives a file from an APl implemetitan, then that application's user must,
at some pointrecognize that the soee informaion is not specified in the APl file. The AP2
implementor may want tmotify the user in some manner thaemd is incomplete inforntimn in
the file due to the non-conformance to the AP1 rule that mandates the use sibthpe with
source information.

The third scenario consists of the specification offfating constraints on the ame atities

in the different AP sabmas. The basic comuis are sharedbput the valid populations of those
concepts are differentpossibly conflicting, and possibly overlapping. The example in figure
1 is the name aibbute of the person_organization_role entity. As previously discussed, APl
contains a rule which says thenly roles of ingrest within its scopeare "a", "b", and "c".
The roles ofinterest to AP2 are "c", "d", and "e". We can spédte ckarly that the only role
which the two APs have in common is "c". Thereforphgsical file containing an instance of the
person_organization_role entity with that role is ofeiast to both APs and the processors
should be able taead andunderstand that role name. Otherwise the msmes may do whatever
they like with any non-conforming roles. The structure igrdh however, tounderstand the
concept and populate the data structure.

The real question dre, is not whether the data is atable, but what a processor will do when

it recognizes invalid data. This is a design decision. If the application is integrated, one
that manipulates dataithin the scope of BTH APl and AP2, then it calobok for any roles
defined by either of the two APs. |If the application is only built to process atatading to

a single AP then it mayhoose to ignore and flag data it finds invalid, that is in violation of
the rule for the particular schema, or it magoose to process and store it. In any event, as
demonstated previously, the AP thatcreated and "owns" the particulainstance of
person_organization_role is always able to be determined due to xikenee dependence of

all data in STEP on the AP meta-data. In order for an application to be effmient, it may
choose to keep rdack of that meta-data ithin the data dictionary for his particular

application. A counter argument to this is that the constraint may be hidden in the
AP2xx_person_and_organization_assignment entity. Frommechanical stadpoint this s
certainly possible. The emantics specified, howevere not what is intended. Instead of

giving an enmerdion for all instances of person_organization _role, the constraint will be
specifying that all person_organization_role entities assigned to eame piof poduct data
using ARXxx_person_organization_assignment shall have the desired roles. This is now no
longer a constraint on the role, but one on the use of the role.

The fourth scenario is one in which each AP has a diffeseditype in its sama for the
asso@tion of product data manament concepts (like person_and_organization) with the
product data. Irthis scenario, imgmentations of one AP1, knowing the sata of theother AP
can process the associations due to the uniform method ameds the teadth of APs. The
information, however, is very pplication specific. Only in the context of the application and
the rest of the application interpreted model does thernmtion make sense. When product
management data is, in fact, used gendyicathe managment data itself isreferenced
through an attbute in the generic product data entity. Of course an AIC mayréated when
the association is completely askd amng two or more application interpreted models and
constraints which are dependent on thasogiation are witten into the association entity.

5 Conclusion

In this paper we have briefly explored the STEP modmthitecture, the STEP interpretation
methodology and @ossible STEP implmentation strategy. We have also taken a look at some of
the concepts within both AP202 and AP203 using some less complicated constructs. Four
scenarios for interoperability have been presented with eimghtation solutions given for
each. A basiobservation which can be made is that STEP has a problem. The problem is that of
education and experience. PDES, Inc. has madeat gstrides in the delogpment of STEP to
provide an arditecture that has a common basis for all applications that use product data. The
same great strides can be made in datairghautilizing these concepts given the proper
planning and imm@mentation strategy of APs in combination. The problem of educatione#. g

Application devéopers must be aave of the deits of the STEP modelarchitecture and
semantics and the STEP development methodology in order to maximize the utility of their
customer's lility to share data. PDES, Inc. has taken great care rieure that the STEP
standard takes an intelligent approach to product data. We must takentlee care to resure

that the implementations that we, as usergmahd from our application developers are
intelligent and the applications that we, as vendors develop have that intelligence. It won't
happen automatically, though. Education is our responsibility. Without the knowledge of the
implementation strategy developed at the PDES, Inc. indeabgity workshop and the data
model knowledge an approach tsystem integration will be ewdmely diffiault. As the
knowledge increases, however, solutions to the problems will be workable and forthcoming.

